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Part I: Solutions to additional exercises

1. Think about following statements and determine whether they are true or false:

(a) (Theorem 3.2.10) Let X = (xn) be a sequence of real numbers that converges
to x and suppose that xn ≥ 0. Then the sequence (

√
xn) of positive square roots

converges and lim
n→∞

(
√
xn) =

√
x.

(b) Let X = (x2
n) be a sequence of real numbers that converges to x and suppose

that x ≥ 0. Then the sequence xn converges and lim
n→∞

xn =
√
x.

(c) Let X = (x2
n) be a sequence of real numbers that converges to x = 0. Then

the sequence xn converges and lim
n→∞

xn = 0.

(Notice that in (b), (c) we are not assuming xn ≥ 0)

Solutions:

(a) True. Refer to the proof on page 68 of the textbook.

(b) False. Consider (xn) = (1,−1, 1,−1, 1,−1, · · · ). Then X = (x2
n) = (1, 1, 1, · · · )

converges to x = 1 ≥ 0 while (xn) is not convergent.

(c) True. ∀ε > 0,∃N ∈ N such that ∀n ≥ N , |x2
n − 0| = |xn|2 < ε2.

Therefore, ∀n ≥ N , |xn| < ε and thus lim
n→∞

xn = 0.

Remark: The difference between (a) and (b) is that in (b) we do not assume (xn)
is a sequence of non-negative real numbers. So that (xn) can be an alternative
sequence, i.e., the terms have alternative signs while their absolute values approach
x meanwhile.

But things are different if the limit x = 0. In this case (xn) can still be oscillating
but the terms are within ε of 0.

As a summary, we have

lim
n→∞

x2
n = x⇐⇒ lim

n→∞
|xn| =

√
x; limxn =

√
x,

limxn =
√
x⇒ lim

n→∞
x2
n = x⇐⇒ lim

n→∞
|xn| =

√
x.

2. (Average of a sequence). Let (xn) be any sequence of real numbers. We define
its partial sum by

Sn =
n∑

k=1

xk,

and the average of it by

An =
Sn

n
.
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(a) Show that if lim
n→∞

xn = x ∈ R, then

lim
n→∞

An = x.

(b) Show that the converse is not true by giving a counterexample, i.e., a real
sequence (xn) whose average converges to a finite limit L ∈ R but xn itself
does not.

Solutions:

(a) It suffices to prove the conclusion for the case that x = 0. We desire to

show that
|x1 + x2 + · · ·+ xn|

n
can be arbitrarily close to 0 on condition that

lim
n→∞

xn = 0. The idea is to split the sum x1 +x2 + · · ·+xn into two parts. One

part consists of finite terms so their sum is a fixed constant and the quotient
can be as small as we want when divided by a natural number n that is large
enough, while in the other part every term is close enough to 0.

Write above arguments in explicit mathematical language: from lim
n→∞

xn = 0

we have
∀ε > 0, ∃N1 ∈ N such that ∀n ≥ N1, |xn| <

ε

2
.

Moreover, by Archimedean Property, there exists N2 ∈ N such that

N2 >
2|x1 + x2 + · · ·+ xN1|

ε
.

Then for any n ≥ N := max(N1, N2), we have

|An| =
|x1 + x2 + · · ·+ xn|

n
=
|x1 + x2 + · · ·+ xN1 + xN1+1 + · · ·+ xn|

n

≤ |x1 + x2 + · · ·+ xN1|+ |xN1+1|+ · · ·+ |xn|
n

≤ |x1 + x2 + · · ·+ xN1|
N2

+
n−N1

n
· ε

2

<
ε

2
+

ε

2
= ε.

Therefore, lim
n→∞

An = 0.

For general case, we define another sequence (yn) by yn = xn − x. Then
lim
n→∞

yn = 0 and from previous argument we have

lim
n→∞

y1 + y2 + · · ·+ yn
n

= 0

which implies

lim
n→∞

x1 + x2 + · · ·+ xn

n
= x + lim

n→∞

y1 + y2 + · · ·+ yn
n

= x.
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(b) Consider xn = (−1)n. Then

Sn =
(−1)n − 1

2
=⇒ An =

(−1)n − 1

2n
.

By Squeeze Theorem we know lim
n→∞

An = 0. However, it’s obvious that (xn) is

divergent.

Part II: Other problems

1. (Limit theorems). Let X = (xn) and Y = (yn) be sequences of real numbers that
converge to x and y respectively, and let c ∈ R. Then the sequences X + Y,X −
Y,X · Y, cX converge to x + y, x− y, xy, cx respectively.

Think about the following statements and determine whether they are true or false.

(a) If X converges to x and Y is divergent, then X + Y is divergent.

(b) If X converges to x and Y is divergent, then X · Y is divergent.

(c) If X is divergent, then cX is divergent.

(d) If both X and Y are divergent, then X + Y is divergent.

(e) If both X and Y are divergent, then X · Y is divergent.

Answers:

(a) True. Otherwise Y = (X + Y ) + (−X) would be convergent.

(b) False. Consider X = (0, 0, 0, 0, · · · ).
(c) False. Consider c = 0.

(d) False. Consider Y = −X.

(e) False. Consider X = (0, 1, 0, 1, · · · ), Y = (1, 0, 1, 0, · · · ).

2. (Comparison of order of growth). We have learned a lot about the growth rate

of different kinds of sequences. For example, lim
n→∞

n

2n
= 0, which can be understood

as 2n grows faster than n, as they both tends to infinity. Let’s look at more results:

1� n� n2 � n100 � 2n � 100n � n!� nn.

Here, an � bn means (we only use this notation in tutorial classes)

lim
n→∞

an
bn

= 0.

I will show n!� nn without using ratio test:

If n > 2K then (we can take K =
[
n−1
2

]
)

n!

nn
=

1 · 2 · · · (K − 1) ·K
nK

· (K + 1) · · · (n− 1)n

nn−K

≤ 1 · 2 · · · (K − 1)K

nK
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<
1

2
· 1

2
· · · 1

2
=

(
1

2

)K

.

So we have lim
n→∞

n!

nn
= 0 (by Squeeze theorem or Theorem 3.1.10).

Also, for bn � n!,∀b > 1: when n > [b] + 1 := B, we have

bn

n!
=

b

1
· b

2
· · · b

B
· b

B + 1
· · · b

n
≤ b

1
· b

2
· · · b

B
· b
B
· · · b

B

=
b

1
· b

2
· · · b

B − 1
·
(

b

B

)n−B+1

.

Since 0 < b/B < 1 from our definition of B, we conclude that lim
n→∞

bn

n!
= 0.

As an exercise, you may try to prove the remaining unsolved case:

na � bn,∀a > 0, b > 1.

3. (Ratio test). Let (xn) be a sequence of positive real numbers and

lim
n→∞

xn+1

xn

= L

where L is a non-negative real number.

(a) If 0 ≤ L < 1, then lim
n→∞

xn = 0.

(b) If L > 1, then (xn) is divergent.

(c) (Ex 3.2.17) If L = 1, then (xn) can be either divergent or convergent, i.e.,
this method fails.

Examples.

(a) Consider the sequence in Problem 1 again where xn =
n!

nn
and we have

lim
n→∞

xn+1

xn

= lim
n→∞

(n+1)!
(n+1)n+1

n!
nn

= lim
n→∞

nn

(n + 1)n
= lim

n→∞

(
1− 1

n + 1

)n

= e−1 ∈ (0, 1)

and thus we have

lim
n→∞

xn = lim
n→∞

n!

nn
= 0.

As an exercise to Section 3.3, you can try to prove the above limit in red.

(c) Consider the following two sequences respectively:

i. xn = n.

ii. xn =
1

n
.
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Remark: Similarly we have the root test if we define

lim
n→∞

n
√
xn = L.

You can refer to Exercises 3.2.20-21 in the textbook.

Part III: Some comments

1. We have learned the limit of a sequence. As I said in the first tutorial, the definitions
are very important and every word should be accurate and precise. Let’s look at
the statement: A sequence X = (xn) in R is said to converge to x ∈ R if

∀ε > 0,∃K(ε) ∈ N such that ∀n > K(ε), |xn − x| < ε.

Keywords: ∀ε > 0,∀n > K(ε):

• The sequence 1, 0.999, 1, 0.999, · · · does not converge to 1 even every term is
very close to 1 in the sense that ∀n, |xn − 1| < 0.01.

• The sequence 1, 0, 1, 0, 0, 0, 0, 1, 0, · · · , 0, 1, 0, · · · does not converge to 0, where
the n-th 1 is followed by n2 zeros. You can see that almost all the terms are 0,
but there always exists some 1’s beyond any position of the sequence.

How to understand this definition: however small ε is, there is a point in the sequence
such that beyond that point, all the terms are within ε of x.

This is a limiting behavior of a sequence and the first few terms do NOT affect
the limit, even if they are quite far from the limit. This is the meaning of the tail
sequence introduced in the text book. You can also refer to the Remark on page
66 of the textbook.

As an exercise, you can try to show that |xn − x| < ε can be replaced by |xn − x| ≤ ε.
It’s a convention in our course and textbook that you should also use < in all your
assignments and exams.

2. When asked to prove that a given sequence is convergent or to find its limit, there
are mainly two cases.

1◦. If you are asked to prove by definition, then the only tools allowed are elemen-
tary algebraic identities, inequalities, mathematical induction and the knowledge
we learned in Chapter 2, including Archimedean Property, Bernoulli’s inequality,
AM-GM inequality and so on. You must start from the original definition and
no other theorems can be used except otherwise stated. The general procedure is

• Let ε > 0 be arbitrary (once ε is fixed, it cannot be changed).

• Find some K(ε) ∈ N, which usually depends on our choice of ε.

• Show that for any n larger than this K(ε), we have |xn − x| < ε.

The most difficult step is usually how to find a suitable K(ε). Sometimes it is
quite tedious and involves complicated calculations. The usual way is to substitute
in xn, x and then solve this inequality. Let’s look at an example to illustrate this
procedure.
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Q: Show by definition that

lim
n→∞

5n2 + 2n + 3

n2 + n + 2
= 5.

Given any positive real number ε, we desire to show that there exists K(ε) ∈ N such
that ∀n ≥ K(ε) we have ∣∣∣∣5n2 + 2n + 3

n2 + n + 2
− 5

∣∣∣∣ < ε.

Then we can solve above inequality to obtain a satisfactory K(ε):∣∣∣∣5n2 + 2n + 3

n2 + n + 2
− 5

∣∣∣∣ < ε⇐⇒ 3n + 7

n2 + n + 2
< ε⇐⇒ εn2 + (ε− 3)n + 2ε− 7 > 0.

However, solutions to this inequality have different formulas depending on various
values of ε and can be complicated.

Notice that it suffices to find one K(ε), we do not need to find out all legal K(ε). So
we can use some basic inequalities and known results to simplify our computations:∣∣∣∣5n2 + 2n + 3

n2 + n + 2
− 5

∣∣∣∣ < ε⇐⇒ 3n + 7

n2 + n + 2
< ε

⇐=
3n + 7

n2
< ε

⇐=
10n

n2
=

10

n
< ε

⇐=n ≥
[

10

n

]
+ 1 := K(ε).

Roughly speaking, we are seeking for a sufficient condition instead of an equivalent
condition. Please notice the different use of ⇐= and ⇐⇒.

2◦. On the other hand, if you are not required to show by definition, then any
theorems, properties and known limits we have learned in the lectures can be applied
and our arguments can be simplified a lot. And you should do enough exercises to
familiarize yourself with these theorems.

At this stage of study, theorem 3.1.10 which can be regarded as an application of
the Squeeze Theorem, is of special use:

Let (xn) be a sequence of real numbers and let x ∈ R. If (an) is a sequence of
positive real numbers with lim

n→∞
an = 0 and if for some constant C > 0 and some

m ∈ N we have
|xn − x| ≤ Can for all n ≥ m,

then it follows that lim
n→∞

xn = x.


